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A numerical technique has been developed for computing the behavior of atomized 
non-evaporating liquid sprays injected into a gaseous environment. The same technique, 
however, is applicable to general incompressible flows containing particles or droplets. 
The method consists of a fully-interacting combination of Eulerian fluid and Lagrangian 
particle calculations. The interaction calculations are performed simultaneously and non- 
iteratively. A Lagrangian description of the particles avoids numerical diffusion, and 
allows individual attributes, such as particle size, composition, etc., to be statistically 
assigned for each particle. Numerical calculations and comparisons with experimental 
data are given for some sprays typical of diesel engine fuel injection. 

1. INTRODUCTION 

Many practical problems involve fluid flows containing particles or droplets. These 
problems range from the transport of particulate pollutants in the atmosphere to the 
spray injection of liquid fuels in internal combustion engines. For purposes of analysis, 
these problems may be divided into two classes. First, there are problems, such as the 
atmospheric pollutant problem, in which it may be assumed that the particles do not 
perturb the flow field. The solution then reduces to tracing particle trajectories in a 
known velocity field. Many examples of this treatment are available, such as Hotchkiss 
and Hirt [l] for the dispersion of atmospheric pollutants, and Gauvin, Katta, and 
Knelman [2] in the design of spray driers. Westbrook [3] has reported computations, 
based on the spray equation, for liquid fuel sprays in this regime. 

In this paper, on the other hand, we are interested in problems, such as high- 
pressure fuel injection in an internal combustion engine, in which the spray carries 
sufficient momentum to entrain and set into motion the surrounding gas. In turn, the 
motion of the gas in the vicinity of the particles reduces the resistance to their motion 
and allows the spray to penetrate much further than would otherwise be the case. It is 
important, therefore, to account for the interaction between the particles and the gas. 
This interaction is of course always present, but it is particularly significant whenever 
the total mass and momentum of the particles is comparable to that of the gas, and 
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when the size of the particles is sufficiently small so that the coupling of a particle to 
the gas is strong. 

There have been several attempts to treat the problem of full coupling between the 
particles and the gas in a two- or three-dimensional flow field. Since diesel engine 
sprays appear to be completely vaporized a short distance away from the injector, 
theories [4, 51 have been developed based on the general similarity of these sprays to 
turbulent gas jets [6]. An example of a quasi-empirical model, also based on the as- 
sumption of a turbulent vapor jet, is the work of Chiu, Shahed, and Lyn [7]. A 
numerical technique, potentially applicable to liquid sprays, is the multiphase (com- 
monly two-phase) technique [8, 91 incorporated in numerous codes used primarily for 
nuclear reactor safety analysis. In this technique, the droplets are considered to be a 
continuous fluid (“droplet phase”) interpenetrating and interacting with the gas 
phase. However, in the common two-phase version the droplets are represented by a 
single average size, which generally is a severe simplification. In principle, this limita- 
tion may be removed by using several fields, each representing a class of particle 
sizes, to describe the spray. This approach, however, is very costly in terms of computer 
time and storage requirements. For spray applications, moreover, the numerical 
smearing of the spray due to the limited resolution of the mesh, especially in the 
vicinity of the injector, may not be acceptable. A related technique reported by 
Haselman and Westbrook [lo] is based on a solution of the spray equation for the 
droplet distribution function. 

An alternative procedure is to represent the spray by discrete particles, rather than 
by continuous distributions. This amounts to a statistical (Monte Carlo) formulation 
of the problem, since the finite number of particles used represents a sample of the 
total population of particles. Each computational particle is considered to represent a 
group of particles possessing the same characteristics such as size, composition, etc. 
The use of discrete particles eliminates the problems of numerical diffusion and of 
resolution in the vicinity of the injector. We have found that the required number of 
particles to achieve satisfactory accuracy is not excessive, and since frequently the 
particles are limited to a part of the mesh, the computing requirements are less severe. 

One of the earliest implementations of this technique is contained in the YAQUI 
code described by Amsden and Hirt [II]. Few practical applications of this particle 
technique were made, however, because the method suffered from numerical difficul- 
ties in the particle-gas momentum exchange, requiring the use of prohibitively small 
time steps to achieve solution in the case of strong coupling between particles and the 
gas. For strong coupling, the momentum exchange terms should be treated implicity. 
In order to avoid iteration on these terms within a time step, YAQUI decoupled the 
calculation by treating the gas velocity in the momentum exchange terms explicitly. 
An implicit method to remove this difficulty is given by Crowe, Sharma, and Stock 
[12]. However, while preserving accuracy, the required iteration is time consuming. 
Their method also neglects the volume occupied by particles in a computational cell 
in comparison with the volume of the gas. 

The method to be described in this paper differs from these previous attempts in 
many details, but principally in eliminating iteration for the particle-gas momentum 
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exchange and in accounting for particle volume displacement effects. It also differs by 
stressing a statistical, rather than a deterministic, approach to the modeling of sprays. 

The technique is presently limited to particles whose size does not change (i.e., non- 
evaporating and nonburning sprays). This is not an inherent limitation of the method 
but it has been adopted to focus attention on the primary, hydrodynamic features of 
the method. In a subsequent publication we will describe the extension of the method 
to evaporating sprays. 

2. BASIC EQUATIONS 

It will be assumed that no particle coalescence or particle breakup occurs. This 
implies that the particles are sufficiently dispersed that particle collisions are infre- 
quent. The initial breakup of liquid sprays or jets is not considered. It is assumed that 
initial conditions for the particles are known. That is, the initial particle size distribu- 
tions, positions, and velocities are independently specified. 

This leads to two sets of equations, one set for the gas and the other for the particles. 
These equations will be coupled primarily by two mechanisms, the displacement of gas 
by the volume occupied by the particles and momentum interchange between particles 
and the gas. Because the particles are nonevaporating and nonburning, there is no 
mass exchange. Further, we assume that the gas or fluid containing the particles is 
incompressible with constant density pB . This is a practical choice since most applica- 
tions will deal with cases of highly subsonic flow. Generalization to compressible 
flow, however, presents no fundamental difficulties. Because of this constant density 
assumption, there is no need for energy equations or an equation of state. 

2.1. Gas Equations 

The continuity equation for the gas is given by [9] 

g + v + eu, = 0, (2.1) 

where 0 is the void fraction, or the fraction of the volume occupied by the gas, and u, 
is the gas velocity. The presence of the void fraction in this equation accounts for the 
displacement effect of the particles. The definition of 0 in terms of particle parameters 
will be given later. 

The momentum equation takes the form [9] 

4 8% f v . h,u, = 8g - f$ VP + v ’ ev,,Vu, + i M, , (2.2) 

where g is the acceleration of gravity, p is the pressure, vg is the kinematic viscosity (or 
eddy viscosity if the flow is turbulent), and M, is the term defining momentum 
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exchange with the particles, per unit volume. An alternative form of this equation can 
be obtained by subtracting out the continuity equation: 

g u, + u, . Vu,=g--Lq++?v,Vu,+~M,. 
P!l ep, 

This is the form of the equation used in the numerical technique. The term containing 
M, will be defined later. 

2.2. Particle Equations 

In a turbulent flow, the gas equations of the previous section are written in terms of 
the mean velocity u, . For particles, gas turbulence is important as a mechanism for 
diffusion; and it is convenient to write the instantaneous, rather than averaged, 
equations for the particles. To do this, we define the instantaneous gas velocity, 
U, = u, + u:, where ui is the turbulent component of the gas velocity. 

Each particle, individually labeled by subscript k, is assumed to obey the following 
equations: 

d 
P pk = bk > 

mk $ %k = mkg - F VP + ~k[ug](ug - Up,& 

(2.4) 

where xpk is the particle position, u@ is its velocity, mk is its mass, and pk is its density. 
The notation &[U&,] is used to denote the drag function, evaluated using the velocity 
U, , which is the coefficient in the force acting on the particle due to its motion through 
the gas. It will be convenient to abbreviate the notation to Dk when referring to the 
drag function evaluated at the mean gas velocity u, (Dk = D&J). The time derivative 
is the Lagrangian derivative along the trajectory of the particle. The term containing 
the gradient of the pressure has been retained for consistency with two-fluid equations 
[9], even though it is generally a small term, of the order of the ratio of gas to particle 
densities compared to the corresponding term in the gas equation [Eq. (2.2)]. Several 
additional terms in the particle momentum equation of the same order of magnitude, 
such as the Bassett and virtual mass terms [13], have been neglected. 

The drag function Dk depends on a variety of parameters such as the particle size 
and shape, local Reynolds number, and local particle density. We assume that particle 
density is sufficiently low that collective effects on particle drag are unimportant, and 
we make the common assumption that the particles are spherical with radius rk . The 
drag function of a nonevaporating sphere is a well-known function of the Reynolds 
number, but for computational reasons we have approximated it by the simplified 
expression 
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where pQ is the gas viscosity. The first term represents the Stokes drag, valid in the 
limit of a very low Reynolds number, 

and the second term is the form drag, evaluated using the drag coefficient C, = 0.4, 
which dominates in the limit of very large Reynolds number. The particle mass is 
given by 

(2.7) 

It is sometimes more convenient to consider the effect of turbulence on the particles 
to be due to a force f,, , in which case the momentum equation is written 

mk $ bk = mkg - 2 VP + D&I, - Uyk) + fBk, (2.8) 

where the turbulence force fPk is given by 

f,k = Dki%l(& - %k) - Dkh - u,k). (2.9) 

The terms in the gas equations [Eqs. (2.1)-(2.3)] dependent on the particles have 
not yet been defined. Taking ensemble averages, we can write 

6 = 1 - c (hrkS8(x - x,,)) (2.10) 
k 

and 

M, = - c (&[Ugl(Ug - U,lc) 8(X - Xgkh 
k 

(2.11) 

where S(x) is the three-dimensional Dirac delta function. For numerical purposes, the 
ensemble averages are repIaced by volume averages, as explained in the Appendix, 
The Appendix also contains a discussion of the relationship between the particle 
description and the continuum description employed in the multifluid equations. 

3. NUMERICAL TECHNIQUE 

The numerical algorithm for the solution of the gas equations is based on the SOLA 
code [15]. This is a simplified, incompressible, two-dimensional flow code available 
from the National Energy Software Center (formerly Argonne Code Center). 
Numerous offshoots of the basic code have been constructed but all are based on a 
mesh composed of rectangular cells illustrated in Fig. 1. The version of the code 
actually used differs from the one described [ 151 in that it has variable mesh line spac- 
ing. Velocities are defined in the middle of cell faces. Thus, there are two staggered 
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J mesh line 

regular cdl - 
(Pii Eii’ 

I mesh line 

FIG. 1. Typical cells and variables associated with the finite-difference mesh. 

meshes associated with the respective velocity components, and the corresponding 
cells, called momentum cells, are indicated by dashed lines in Fig. 1. 

These computational cells act as control volumes for the dependent variables 
associated with the basic equations. The regular cells are the control volumes for the 
mass continuity equation. Variables associated with them are the pressure pij and the 
void fraction Bij . The momentum cells are the control volumes for the momentum 
equations, and the associated variables are U,,ii and v,,~~ and the components of the 
pressure gradient Vp. To a first approximation, these variables are assumed to be 
constant within their respective cells. 

Spatial differencing in a rectangular mesh is generally straightforward and is 
described in the SOLA report [ 151. The temporal differencing contains the essence of 
the present technique and will be described in some detail. We will use superscripts to 
denote time levels such that, for example, 

and 

Pii a+1 = pij(tn + At) = pii(tlE+l). (3.2) 

We shall also use a time-splitting procedure employing intermediate time levels 
denoted by superscripts such that 

t” <t= < t2= < t3= < t*+l. (3.3) 
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Subscripts denoting cells will be omitted, since in general it will be obvious from the 
variable itself to which type of cell it is referred. Frequently, to simplify notation, 
vector equations will be written for the x-component only. 

Individual particles will be denoted by subscript k. Quantities associated with each 
particle will be its radius rk , position xk , velocity uDk , and number of particles in the 
group N,, . The density of each particle may be different (plJ, although for the present 
it is assumed to be constant pp . 

3.1. Void Fraction and Continuity Equation 

Knowing the position of each particle at time tn-l~l the void fraction is calculated 
using Eq. (2.10). For each regular cell the void fraction is 

where the summation is over all particles in regular cell (ij) and Vij is the volume of 
that cell. The void fraction is assumed to be centered in the cell; values at cell faces are 
obtained by linear interpolation. 

The continuity equation [Eq. (2.1)], omitting cell subscripts, is differenced as 
follows: 

““+;-T + v %;+lu;+’ = 0, 

where %‘:+l refers to a cell-face void fraction, associated with a momentum cell, 
obtained by interpolation. 

3.2. Momentum Exchange Term and Momentum Equations 

Consider, for example, a momentum cell associated with the velocity component 
u,,~~ . The argument for the velocity component v,,~? is entirely analogous. For 
particles within this cell the momentum exchange term [Eq. (2.1 l)] is written 

M n+1 
= - fl,T N,,,D;TIUg]((I,“+l - u;:‘), 

omitting the cell subscript, where Vu is the momentum cell volume. Notice that the 
term is linearly implicit in the velocities, in the sense that while the drag function is 
evaluated at some intermediate time level 2T, to be defined leter, the relative velocity 
factor is evaluated at the time t %+l. In order to evaluate this term it is necessary to 
consider the particle momentum equation, which is differenced as follows: 

n+1 Iz 
%k - %k 1 apn+1 

At =gx - pv ax ~ (u;+l - 24;:‘). 
mk 
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Rearranging terms, this equation can be written as 

where we have used the short notation DiT z D~‘[U,]. Now, summing over all 
particles in the momentum cell and recalling that $+l and 8pn+‘/8x are assumed to be 
constant within the cell, we obtain 

t [(g, - ; Gj At - u;“] ; 1 +2;;;,m k . 

If we define 

RzT G u ' C NaD? 
P,q+YJ k 

(u;k _ u;), 
1 f At DiTjm,< 

s2T Es u 
1 c N,,D2,T 

p,fl;+lVu ,< 1 + At D2,Tlm, ’ 

(3.10) 

(3.11) 

where OE+l is the void fraction associated with the momentum cell, the momentum 
exchange term becomes 

M 
[( 

1 t?pn+l 
LzLf = Pdcfl g, - pp ax -j At St’ - u,“+?S:’ + RET] . (3.12) 

The parameters RiT and Sf are momentum cell quantities that depend on explicitly 
available particle information. They vanish when particles are absent from the cell. 

The x-component of the gas momentum equation [Eq. (2.3)] is therefore temporally 
differenced as follows: 

n+1 
UC3 - ‘,” + Fzn = g, - - 

At 
igG+ (gz-;q)Ats:T 

where 
- u,““S;’ + RtT, (3.13) 

1 FnGUn.Vun-- 5 B B p+l u , e+ Y vu n 9 . (3.14) 
u 

The set of equations to be solved is composed of Eqs. (3.9, (3.7), and (3.13), 
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together with the corresponding v-component equations. The equations are implicit 
in the pressure and partly implicit in the velocities. The continuity equation [Eq. (3.91 
and the gas momentum equation [Eq. (3.13)] are solved by iteration in analogy with 
the MAC method [16]. The particle momentum equation [Eq. (3.7)] is solved directly 
once p” +l and ur” are known. Note that the procedure defined by Eqs. (3.8)-(3.14) 
has eliminated the need to iterate between the particle and gas equations. The actual 
computational procedure is described next. 

3.3. Computational Procedure 

The computational cycle starts by introducing new particles into the mesh as a 
result of injection, or transport through inflow. The procedure for injecting particles 
in the case of a spray is described in the following section. The particles are then 
transported using the explicit equations 

r&+1 n 
%k - %k = 

At u;k . 

Since the particle position has changed, the void fraction lP+l is updated using 
Eq. (3.4), in those cells where a particle has left or has entered. At the same time, 
particles leaving the computing mesh, or otherwise disappearing, are removed and all 
particle arrays are repacked. 

The equations that have to be solved next, simultaneously, are the gas and particle 
momentum equations: 

- u;+ls;T + ~~~ 

and 
n+1 la 

%k - u,k 
At 

n+1 g (u;+’ - #,k ). (3.7) 

We shall employ a splitting procedure, which, while preserving the original equations, 
will solve them in a number of stages. 

The purpose of the first and second stages is to predict explicitly new-time gas and 
particle velocities in order to calculate Df, and therefore Sf and Rt*. We first 
calculate intermediate gas and particle velocities, accounting explicitly for all forces, 
except for particle interactions and turbulence, using the following equations: 

and 
Uik - u;, _g,-‘!E 

At s fu ax . 
(3.17) 
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These temporary velocities are used to evaluate a temporary drag function D,*, using 
Eq. (2.6), and then to calculate the particle interaction terms SUT and RUT, from 
Eqs. (3.10) and (3.1 l), neglecting turbulence (u; = 0). A second approximation to 
the gas and particle velocities, approximately accounting for particle interactions, is 
now obtained using the following equations: 

2T 
u!l - 4, 

At 
dtS,T-u;rSS,T+R 7 u 

and 

27 
Uuk 

T 
- %k 

At 
(3.19) 

Having both gas and particle velocities at stage 2T makes it possible to calculate Dp, 
the final approximation to the drag function. The drag function at this stage should 
contain the effects of turbulence (Section 2.2). We therefore calculate u; (methods for 
estimating ui or f,, will be discussed in Section 3.5) and proceed to calculate Dr, and 
hence Sp and Ry. At this stage it is also convenient (since turbulent yelocities ui are 
available) to update particle velocities for turbulence: 

(3.20a) 

The gas velocity is next explicitly updated for particle interactions: 

3T 
% - % 

T 
= 

[ 
g _ ' w 

At s p,, a.x I At S:’ - ufTStT + R;‘. (3.20b) 

This leaves the implicit portion of the momentum equation, which is conveniently 
written as follows: 

n+1 % 
At 1 + (po/pJAtSf? a _ u3T = _ _ cl 
PB 1 1 + At SET __ ,,(P I 

n+1 -p")+ (3.21) 

This equation, together with the continuity equation [Eq. (3.5)], forms the basis for a 
MAC-type pressure iteration to obtain final values of ui+l andp*+l. 

Following the iteration, the particle velocities are updated to the final time level 
using the equation: 

n+1 
%k 

3T 
- UP?4 1 apn+l 

At -+ =gz - P, ax g (u;+’ - uiT - u;;’ + u;;). (3.22) 

This brings all velocities to the final level. The time is now incremented and the cycle 
repeated with the new velocities. 
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3.4. Injection of Particles 

Each particle injected or entering the mesh must be assigned a velocity &,k, a 
radius rk , and the number of particles in the group NDI, . Let the number of com- 
putational particles injected per cell per time step be K. The radius of each particle is 
then chosen from a uniform random distribution in the range 

0 < rk < rmax for 1 <k -C K. 

If the particle mass flow into the cell is Q, we can write the following equations de- 
fining NPk: 

and 

(3.24) 

where 01 is a proportionality constant andf,(r) is the initial particle size distribution 
function. These two relationships [Eqs. (3.23)-(3.24)] are sufficient to determine NDk . 
Note, however, that more than one particle per cell must be injected (K > 1) in order 
to develop a distribution of particles which approximates the specified size distribu- 
tion function f7(rk). 

We assume that the particle velocity distribution is independent of the size distribu- 
tion. The velocity distribution is very much problem dependent. As an illustration, 
the following procedure was employed for modeling a simple, single-hole spray 
injector. Assume that the spray is injected in the vertical direction. If the mass flow Q 
is known, the magnitude of the injection velocity is 

(3.25) 

where d is the diameter of the injector orifice. Of course, Q may be time dependent. 
Alternatively, if the pressure drop across the nozzle is known, then 

2Ap II2 v=co ___ ( 1 > 
PP 

where C, is the discharge coefficient of the nozzle and Ap is the pressure drop. The 
transverse velocity is derived in terms of the initial spray angle using the relationship 

Max(u,,) = V tan 6, (3.27) 

where 8 is the half-angle of the initial portion of the spray cone. Transverse velocities 
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are then assigned to individual particles from a uniform random distribution in the 
range 0 < u,~ < Max&,,). Since the magnitude of the droplet velocity is V, this 
determines both components of velocity. The initial spray angle must be provided for 
the injector in question; however, some guidance is available. For conditions in the 
range of interest for spray fuel injection, it is found [17] that 

tan 8 = A fEj1’2, 

where A is a constant dependent on the nozzle used. Therefore, it may be adequate to 
characterize the nozzle by the single parameter A. 

3.5. Turbulent Diffusion of Particles 

Turbulence is a very complex phenomenon; in general it will not be possible to deal 
with it, or its effects on the particles, in any detail. The effect of turbulence on the 
particles is formally accounted for by the presence of the term fsK in the particle 
momentum equation [Eq. (2.8)]. The principal effect of interest is particle diffusion 
[18]. With this in mind, there are two relatively simple techniques which may be 
employed to model fDk . 

An effective numerical technique for computing the turbulent transport of particu- 
lates is given by Hotchkiss and Hirt [I]. They assume that a diffusion equation exists 
for particle concentration, and a turbulent particle diffusivity DT is known. Each 
computational particle is assumed to diffuse about its position at the start of a time 
step. The resulting particle concentration, which is Gaussian, forms a distribution 
function for the location of the particle. Particle positions are randomly selected from 
within this distribution, such that on each time step the diffusional increment in 
particle position is 

dxDk = (4D,dt)l12 sgn(X, Y)erf-I(/ X / , 1 Y I), (3.29) 

where X and Y are random variables, associated with the x- and y-coordinates, 
selected from a uniform distribution in the range - 1, < X, Y < 1. This is equivalent 
to selecting the following random particle force on each time step: 

The turbulent diffusion constant DT may be estimated by the method of Margolin [18], 
for example, and in general this will require turbulence modeling to evaluate the 
properties of the turbulence field. 

An alternative possibility is to attempt to model the diffusion directly, as a random 
walk of the particles acted on by the turbulent gas velocity field. We assume that 
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fluid turbulence is isotropic and has a Gaussian distribution in velocity. Given the 
turbulent kinetic energy q, where 

q = UI, . u; ) (3.31) 

random instantaneous turbulent velocities may be selected from the distribution as 
follows: 

ub = g1j2 sgn(X, Y) erf-l(i X / , j Y I), (3.32) 

where, as before, X and Y are random variables selected for a uniform distribution in 
the range -1 < X, Y < 1. To complete the discription, the relevant turbulence time 
scale T is required. The velocity ub is assumed to act for a time equal to T. The random 
particle force is then estimated using Eq. (2.9), or the turbulent component ui may be 
simply added to the gas velocity in the particle momentum equation [Eq. (3.20a)l. 
Again, turbulence modeling is required to estimate q and 7. 

Numerically, the two techniques are equivalent with a suitable choice of Dr . An 
elementary analysis suggests that the second method produces particle diffusion 
corresponding to 

DT N $ (+-I2 qT3. 
k 

(3.33) 

It is clear that this type of treatment will fail to account for effects due to the presence 
of one or more particles within the same turbulent eddy. Such a level of description is 
unwarranted, however, since the principal aim is to describe the particle diffusion and 
this is already adequately defined by the parameter DT . 

4. NUMERICAL RESULTS 

4.1. Single-Orifice Diesel Spray 

The initial application of the present technique has been the modeling of fuel 
injection sprays. It would be desirable to compute sprays for which experimental 
data are available so that a direct comparison could be made. Unfortunately, experi- 
ments which provide sufficient data to specify the spray do not appear to exist. The 
experiments of Hiroyasu and Kadota [ 19,201 come closest to providing such data and 
were therefore chosen to provide the basis for the following computations. To specify 
the spray, information is needed on the injected droplet size distribution, as well as the 
velocity distribution, which in general will be time dependent. For computational 
purposes these data had to be estimated, and in some cases drastic approximations 
had to be made. 

The experiment of Hiroyasu and Kadota consisted of injecting diesel fuel oil, using 
a diesel-type injection system, into a high-pressure low-temperature gaseous environ- 
ment. The objective of the experiment was to evaluate droplet size distributions for a 

581/35/W 
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TABLE I 

Experimental Spray Data [19] 

Fuel 

Pump 

Pump speed 

Nozzle 

Nozzle opening pressure 

Ambient gas 

Gas pressure 

Gas temperature 

Diesel fuel oil, pI, = 840 kg/m3 

Bosch PE6A60B 

500 rpm 

Single-hole orifice (diameter d = 0.3 mm) 

Pi, = 9.9 MPa 

Nitrogen 

0.1-5.0 MPa 

20- 25°C 

number of injectors and for a range of experimental parameters. Because of the low 
ambient temperature and the low volatility of diesel oil, it is felt that evaporation was 
not a factor in this experiment. The experimental conditions for which numerical cal- 
culations were made are listed in Table I. 

Since injection velocity was not measured, it was estimated using Eq. (3.26) with 
Co = 0.8, and assuming that nozzle pressure was equal to the valve opening pressure 
of 9.9 MPa. Valve opening was assumed to be instantaneous, and the valve was 
assumed to stay open for the duration of the calculation. This is not entirely realistic. 
Examples of oscilloscope traces of nozzle inlet pressure and nozzle needle lift [19,20] 
show that they are not time independent, and therefore the calculations neglect the 
initial injection system dynamics. Transverse injection velocities were estimated on 
the basis of Eq. (3.28), using A = 0.4, which approximately corresponds to the 
experimental data for initial spray angle. Eddy viscosity was estimated using a value 
appropriate to a turbulent gaseous jet [21]: 

vg = 0.0161 (K,)l’“, (4.1) 

where 

m K,,, =2n 
I 

v2x dx = @d2 V2, (4.2) 
0 

where d is the orifice diameter and V is the droplet injection velocity. No attempt was 
made to calculate particle diffusion accurately. Particle turbulence was modeled using 
the second method of Section 3.5, arbitrarily assuming 4 = 0.111, * u, and T = At. 

The droplet size distribution was measured in the experiment using a collection 
system located about 65 cm downstream of the injector. It was found that all the data 
were fitted by a size distribution function of the form: 

(4.3) 
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where D,, is the Sauter mean diameter, defined by 

where D is the droplet diameter (D = 2r). Therefore, the distribution is characterized 
by the single parameter D,, . Very little variation in D,, was observed among the three 
types of nozzles tested. A reduction of D,, with radial distance away from the spray 
axis was observed. For computational purposes, the measured value of D,, closest to 
the axis was taken to be the reference value for the spray. 

However, the measured value of D,, is unlikely to be characteristic of the droplet 
size in the vicinity of the injector. For example, for the spray injected into a back 
pressure of Pb = 3.0 MPa (30 atm), simple droplet stability considerations based on 
the Weber number criterion: 

where mp is the droplet surface tension, and assuming a representative relative velocity 
of 40 m/s (maximum injection velocity ~100 m/s), suggest a stable droplet radius to be 
about 5 CL, compared to the measured Sauter mean radius of 50 CL. This implies that 
agglomeration occurs somewhere downstream of the injector, or in the sample collec- 
tion apparatus. For computational purposes, the measured size distribution function 
was retained, but the measured reference Sauter mean diameter was reduced by a 
constant factor of 10 to more nearly represent the distribution in the vicinity of the 
injector. The resulting parameters, defining the computed sprays, are given in Table II. 

The spray was assumed to be axially symmetric, and the computation was carried 
out in cylindrical coordinates. The mesh and a typical computed velocity vector plot 
and particle plot are shown in Fig. 2. The axis of symmetry is located vertically in the 
center of the mesh. For good accuracy it was found necessary to refine the mesh near 
the spray axis, as shown. This is because of the large velocity gradients near the axis, 

TABLE II 

Estimated Spray Data 

Gas Injection Transverse Gas Mass Sauter mean Eddy 
pressure velocity velocity density flow radius(SMR) viscosity 
(MW (m/s) (m/s) (kg/m3) his) 64 W/s) 

0.1 122.2 1.79 1.123 0.007256 5.0 7.1 x 10-a 

1.1 115.8 5.61 12.36 0.006876 4.3 6.4 x 1O-4 

3.0 102.54 8.19 33.7 0.006088 5.0 5.0 x 10-4 

5.0 86.41 8.89 56.17 0.005131 5.5 3.6 x IO-4 
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FIG. 2. Representative results from a spray calculation (PC = 3.0 MPa, t = 2.5 ms). (a) Mesh; 
(b) gas velocity vectors; (c) Particle distribution. 
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FIG. 3. Comparison of computed spray penetration with experimental data of Hiroyasu and 
Kadota 1191. 
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and because large cells imply low gas velocity for a given momentum, and therefore 
result in unrealistically high drag between the particles and the gas. The velocity plot 
shows the gas velocities to be essentially confined to the vicinity of the spray, except 
near the injector where gas entrainment is more pronounced. 

The computed penetration of the tip of the spray as a function of time is compared 
with the experimental data [19] in Fig. 3, for four levels of ambient gas pressure. In 
spite of the uncertainties in droplet size, injection velocity, and mass flow, the overall 
agreement is remarkably good, both for the magnitude of the penetration and the 
shape of the curves, especially in view of the fact that spray penetration is a sensitive 
function of the spray dynamics. We have made calculations to show that single 
droplets of a size characteristic of these sprays exhibit minimal penetration under 
these conditions. For example, an 1 l-p-diameter droplet will penetrate about 2.1 mm 
after 5 ms in the case of ambient pressure Pb = 5.0 MPa. This emphasizes the great 
importance of the spray-gas interaction, and the resulting entrainment of the gas into 
the spray, in determining the spray penetration. 

The effect of initial injector system dynamics is illustrated in Fig. 4. Examples of 
oscilloscope traces of nozzle inlet pressure and nozzle needle lift are given in 1201 for 
the case of ambient pressure Pb = 1.1 MPa. These traces were used to account 
approximately for time-varying injection pressure and mass flow. The injection 
velocity was assumed to vary injection pressure according to Eq. (3.26). The mass 
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FIG. 4. The effect of time-varying injection system pressure and effective 
initial shape of the spray penetration curve (P, = 1 .I MPa). 
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flow was estimated in two ways. In the first case, it was assumed that the effective 
nozzle area is proportional to the needle lift, which therefore serves as a factor multi- 
plying the mass flow given by Eq. (3.25). In the second case, because of the very small 
nozzle area, it was assumed that the nozzle is fully opened as soon as the needle begins 
to lift. The resulting spray penetration for these two cases is compared with the 
baseline spray (conditions listed in Table 11 and plotted in Fig. 3). The approximate 
injection pressure and nozzle lift function used in the calculation are also shown in 
the figure. Both these parameters significantly affect the penetration, especially in the 
initial portion of the spray trajectory, and therefore should be modeled for an accurate 
description of the spray. 

4.2. Monodisperse Spray 

One of the main limitations of the two-phase technique [8,9], described earlier, is 
its inability to account for more than a single droplet size. It is interesting, therefore, 
to look at the behavior of monodisperse sprays in order to evaluate this limitation. 
Figure 5 shows a series of particle plots comparing the behavior of monodisperse 
sprays for the case Pb = 1.1 MPa at 1 .O ms after the start of injection The first four 
plots are monodisperse sprays containing particles of radius 2.1, 4.3, 6.4, and 8.6~, 
respectively. The fifth plot is the corresponding polydisperse spray with particle radii 
in the range O-8.6 CL, distributed according to Eq. (4.3) with a Sauter mean radius 

FIG. 5. Particle plots illustrating the effect of droplet size in a monodisperse spray, and the effect 
of particle turbulence on the shape and penetration of the spray (Pa = 1.1 MPa, t = 1.0 ms). (a) 
Monodispelse, I’, = 2.1 h; (b) monodisperse, Y, = 4.3 p; (c) monodisperse, Y, = 6.4 p; (d) mono- 
disperse, rp = 8.6 CL; (e) polydisperse, rg = O-8.6 ~1; SMR = 4.3 p; (f) Polydisperse with no particle 
turbulence, r,, = O-8.6 p, SMR = 4.3 y. 
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(SMR) of 4.3 p. The monodisperse sprays show widely different penetration, although, 
coincidentally, the penetration of the polydisperse spray with SMR = 4.3 p is 
approximately the same as the penetration of the monodisperse spray with the same 
droplet radius. The last plot shows the same polydisperse spray, but without particle 
turbulence. .It can be clearly seen that the turbulence produces diffusion of the particles 
and increases the apparent spray angle. It also reduces the penetration of the spray, 
presumably because the more widely dispersed spray is able to transfer its momentum 
to more of the gas, reducing gas velocity, and therefore increasing the drag on the 
spray. In many calculations it is possible to discern a characteristic “cap” forming at 
the head of the spray, especially in spray patterns without particle turbulence. The 
cap is composed of droplets which reach the outer periphery of the spray, where they 
are left behind because of their low velocity. With particle turbulence the cap is less 
apparent because turbulent diffusion smears out such features; however, these slow 
droplets are still present in the outer periphery of the spray. 

4.3. Effect of Varying Particle Number 

The number of particles injected per cell per time-step (K) is a free parameter. 
Since the mass flux is fixed, varying K implies a change in Nsk , the number of particles 
in the group represented by a computational particle. Increasing the number of 

FIG. 6. Particle plots illustrating the effect of the number of particle on the shape and penetration 
of the spray (Pb = 3.0 MPa, i = 3.0 ms). (a) K = 2, NV = 300; (b) K = 3, N, = 450; (c) K = 4, 
N, = 600; (d) K = 5, N, = 750. 
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particles will improve the statistical accuracy of the calculation but it will increase 
computational time and storage requirements. Figure 6 illustrates the result of varying 
K. The figure shows particle plots for the same spray (Pb = 3 MPa, see Table II) at 
identical times, for a range of values of K (K = 2, 3, 4, 5). It appears that, provided 
K > 2, the dynamics of the spray are not very sensitive to variation in this parameter. 
This is fortunate because it implies that the present technique is computationally 
economical since relatively few particles are required for an accurate description, The 
technique breaks down for K = 1 since it is then impossible to model the droplet size 
distribution (see Section 3.4). 

4.4. 45” Hollow-Cone Spray 

A case of some practical importance is that of sprays with a hollow-cone shape, 
since such sprays produce improved dispersion. This is also a case that is very difficult, 
if not impossible, to model using the continuum two-phase approach. In the absence 
of detailed experimental data, several artificial hollow-cone sprays were computed to 
illustrate the qualitative features of such sprays. Figure 7 shows the particle plot and 
the velocity vectors for a monodisperse spray, with droplet radius ru = IO I.L, injected 
into air at approximately atmospheric back pressure (P, = 0.1 MPa), and neglecting 
particle turbulence. The injection velocity is 100 m/s. The mesh is composed of square 
cells, 1 mm on a side. The injector is shown in outline in the lower center portion of the 
particle plot. The scale of the plot is indicated by the fact that the injector is two cells 
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FIG. 7. Velocity vectors and particle plot illustrating a weakly interacting 45” hollow-cone spray 
(& = 1.1 MPa, ri, = 10 p, t = 0.3 ms). 
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wide and six cells high. The geometry is axisymmetric and the lower boundary 
represents a solid plate with a free-slip boundary condition. At this low back pressure, 
and relatively large droplet size, there is little interaction with the gas and the spray 
preserves its shape, with a small amount of clustering at the tip of the spray. The 
entrainment of the gas is not large and the gas flow is confined essentially to the 
vicinity of the spray. 

For a smaller droplet size (yD = 2.5 CL) at the same back pressure, the interaction 
with the gas is much stronger, as seen in Fig. 8. The spray penetration has decreased 
and the shape of the spray is no longer conical, due to the interaction of the droplets 
with the induced air flow [22]. The velocity vectors show the presence of a vortex near 
the head of the spray, which curls the spray tip toward the outside of the spray. The 
induced air flow velocities are much higher and more air is entrained. There also 
appears to be a region of strong inward flow in the center of the cone near the injector. 

When the back pressure is increased, for the same droplet size (PO = 3.0 MPa, 
rv = 2.5 p), the coupling with the gas becomes very strong, as seen in Fig. 9. Most of 
the spray momentum is transferred to a larger amount of the gas, with the result that 
the air flow velocities are lower, and the spray penetration has been slowed further. 
The velocity vectors show that the gas velocities inside the spray are primarily in the 
axial direction. This pattern is similar to observed flow patterns from smoke flow 
visualization studies [23,24] of hollow-cone sprays. 

FIG. 8. Velocity vectors and particle plot illustrating a moderately interacting 45” hollow-cone 
spray (P, = 1.1 MPa, r, = 2.5 p, I = 0.6 ms). 
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FIG. 9. Velocity vectors and particle plot illustrating a strongly interacting 45” hollow-cone 
spray (Pa = 3.0 MPa, rr = 2.5 I*, t = 3.0 ms). 

5. DISCUSSION 

The numerical technique described has generally been well-behaved except under 
conditions when particles cluster locally so that the void fraction becomes negative in 
that cell. This is strictly unphysical since it implies that particles occupy more space 
than is available. Under these conditions the flow quickly becomes unstable. There 
are a number of possibilities for modifying the technique to prevent particles from 
packing closer together than the close-packed limit, for example. However, in practice, 
especially when particle turbulence provides particle diffusion, this problem rarely 
arises. 

The development of the technique is based on the assumption of noninteracting 
droplets. While this assumption is bound to fail in the vicinity of the injector, it is not 
clear whether neglecting this effect will have a significant effect on the subsequent 
dynamics of the spray, provided reasonable data are available for droplet distributions 
close to the injection. Clearly, many other approximations are involved, such as the 
assumption of spherical droplets, as well as the numerical inaccuracies associated with 
a finite mesh. The penetration curves of Fig. 3 suggest that good practical results can 
be obtained with the present technique. Much better experimental data than currently 
available will be necessary to resolve these questions. 
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APPENDIX: PARTICLE STATISTICS 

A fundamental formulation of particle dynamics may be obtained in terms of a 
Liouville equation for the particle distribution function [9]. This formulation is 
identical to the well-known spray equation given by Williams [14]. It can be shown 
that the multifluid equations are equivalent to moments of the spray equation [9]. It 
is therefore useful to point out the relationship of the present particle formulation to 
the spray equation. 

The spray equation defines the behavior of the droplet distribution function f, 
which is defined such that 

AN = f(r, x, u, , t) dr dx du, (Al) 

is the average number of droplets of radius r in the interval dr, located at position x 
in the volume interval dx, and with velocity u, in the interval du, , at time t. 

In a particular realization, a cloud of droplets at time t, for example, the number of 
droplets in the small interval Ar, dx, and du, can be expressed as 

AN = s,, Ax 
1 6(r - rlc) 6(x - x,) 6(u - u,*) dr dx du, . 

* * Au P 7x 

Taking an ensemble average, the average number of droplets is 

642) 

AN=/ < c S(r - rR) 6(x - x,) 6(u - u,J > dr dx du, . (A3) 
Ar,Ax,Aun 73 

Since the ensemble average is expected to be essentially constant over the small 
interval Ar, AX, Au, , we can take it outside the integral sign, and we obtain 

AN = < C 6(r - rJ 6(x - xk) 6(u, - uyk) > 
i 

dr dx du,, 
7: Ar,Ar,Au,, 

= < C 6(r - rk. 6(x - xk) 8(u, - u,J > Ar Ax Au, . (A4) 
k 

Comparing this with Eq. (A the continuum statistical description embodied 
in the spray equation and the discrete particle realization described in the previous 
sections. 

For modeling purposes, it is 

not possible to deal with the large numbers of droplets 
present in an actual spray so that a sampling technique must be employed in which 
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each single particle represents a characteristic group of particles. This is equivalent to 
the following “instantaneous” distribution function: 

f(r, x, u, , f> = C NdV - rk) 6(x - x3 %u, - ud, 646) 

where NPk is the number of identical particles represented by particle k. The number 
N,, is determined by boundary conditions, and by the constraint. 

1 N,,ml, = M, (A7) 
k 

where M is the total mass of particles. 
Calculating a large number of realizations to obtain ensemble averages is clearly 

impractical. Instead, it is possible to substitute volume averages. Referring to Eqs. (A4) 
and (A5), we see that 

f(r, x, u, , t) = < C 6(r - rk) 6(x - x3 6(u - u,J > z dr jzAu . 648) 
P Y 

where dN is the number of particles in the “volume” drhh, . The number of 
particles in the calculation can be increased to improve the approximation. Standard 
statistical tests can then be performed to evaluate the approximation, if desired. 
Actually, it will rarely be necessary to evaluate the distribution function directly. 
However, initial conditions, or boundary conditions, will frequently be most con- 
veniently specified in terms of the distribution functionsf(r, x, u, , 0), orf(r, x0, II,,, t), 
where x, are the boundary coordinates. For example, in the spray problem the 
boundary conditions specifying the injector velocity distribution and droplet size 
distribution must be provided. 
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